首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1388篇
  免费   136篇
  国内免费   73篇
化学   945篇
晶体学   16篇
力学   53篇
综合类   3篇
数学   64篇
物理学   516篇
  2023年   9篇
  2022年   13篇
  2021年   36篇
  2020年   63篇
  2019年   30篇
  2018年   42篇
  2017年   52篇
  2016年   76篇
  2015年   60篇
  2014年   67篇
  2013年   139篇
  2012年   62篇
  2011年   85篇
  2010年   73篇
  2009年   87篇
  2008年   96篇
  2007年   73篇
  2006年   85篇
  2005年   69篇
  2004年   82篇
  2003年   50篇
  2002年   43篇
  2001年   35篇
  2000年   17篇
  1999年   19篇
  1998年   23篇
  1997年   21篇
  1996年   14篇
  1995年   14篇
  1994年   18篇
  1993年   9篇
  1992年   10篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
  1981年   3篇
  1972年   1篇
排序方式: 共有1597条查询结果,搜索用时 46 毫秒
1.
Conductive hydrogels with ionic compounds possess great potential for the development of soft smart devices. A dielectric scarfskin is typically required for these devices to prevent short circuiting, leading to devices with lower stretchability than the hydrogel. Henceforth, commonly used dielectric materials, such as PDMS and Ecoflex, cannot be largely stretched. Hydrogel devices with ultrastretchability are required to accommodate hostile application environments. Herein, we propose a hydrogel fiber coated with a dielectric layer that can be stretched to over 2000% of its initial length. The fiber remains conductive when stretched to ~1300%. In addition, the core/sheath hydrogel fiber can be endowed with a variety of functional properties, such as electroluminescence (EL), photoluminescence (PL), and magnetic‐responsiveness, demonstrating scalability of the resultant fiber. The present work can pave the way for numerous next‐generation soft devices, such as smart textiles and wearable electronics. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 272–280  相似文献   
2.
By combining microfiber spinning techniques with aqueous two phase system (ATPS), a rapid and simple strategy to fabricate water-in-water (w/w) droplets encapsulated in microfibers was proposed for the first time. Hydrophilic environment in hydrogel and the fiber format facilitates higher biocompatibility, convenient manipulation of the droplets and recycling of the contents inside droplets, which would have promising development in biological, pharmacological and environmental fields.  相似文献   
3.
The production of ligno-cellulosic biomass-based composites requires the development of new methodologies to evaluate the reinforcement potential of a given biomass, such as miscanthus studied in the work. Miscanthus stems from thirteen genotypes were broken into elongated fragments and mixed with polypropylene composites in an internal mixer. The aim is to find the best protocol able to discriminate miscanthus genotypes for their reinforcement capability. The following process parameters were optimized in order to maximize the reinforcement effect of the stem fragment filler: mixing parameters (mixing time, rotor speed and chamber temperature), temperature, fragment content, size and length distributions and coupling agent. The relationship between the process parameters and the mechanical properties of composites were analyzed to evaluate the influence of genotype on reinforcement performance, showing the robustness of the protocol in effectively discriminating genotypes according to their reinforcing capacity.  相似文献   
4.
This work focuses on the effects of different ultrasound power densities on the microstructural changes and physicochemical properties of okara fibers, which are composed of carbohydrate-based polymers. Okara suspensions were treated with ultrasound at different power densities (0, 1, 2, 3, 4, and 5 W/mL) for 30 min, after which the ultrasound-treated okara were hydrolyzed by trypsin to obtain okara fibers. The ultrasound treatment of the okara fibers induced structural disorganization and changes, evidenced mainly in their morphological characteristics and their relative crystallinity degrees. Increasing the ultrasound power broke the okara fibers into flaky and stacked structures. When the ultrasound power density reached 4 W/mL, the parenchyma became compact and the hourglass structure fractured. The mean particle size of the okara fiber was reduced from 82.24 µm to 53.96 µm, and the homogeneity was enhanced significantly. The relative crystallinity of the okara fibers was reduced from 55.14% to 36.47%. The okara fiber surface charge decreased when the ultrasound power was increased. However, after ultrasound treatment at 4 W/mL (800 W), the okara fiber suspension exhibited the highest viscosity value and a higher swelling capacity, water-holding capacity, and oil-holding capacity. Therefore, the results indicated that the selection of processing conditions for okara fibers is critical and that okara fiber modification using a high ultrasound treatment might improve their use in potential applications.  相似文献   
5.
One of the commonly used methods to synthesize furans is the three-component reaction among aromatic aldehyde, arylamine, and acetylenedicarboxylate. The main advantages of this work are easy reaction work-up, short reaction time, high yield and easy recyclability, reusability of the catalyst. And also basalt fiber applications are surely innovative in many industrial and economic fields, because of its good mechanical, chemical and thermal performances.  相似文献   
6.
Natural fibers are inexpensive, biodegradable, and have similar specific properties to some synthetic fibers. Hardly any previous investigations exist of a composite made of multiple layers of pure Kevlar fiber fabric and pure Flax fiber fabric in a “sandwich structure”, but it only measured impact properties. The composite was made of 12 Flax/epoxy layers at the core in 3 possible configurations (i.e. [0]12F, [0/90]6F, or [±45]6F) that were sandwiched by 2 Kevlar/epoxy layers (i.e. plain weave) on each side. This study showed maximum change in the mechanical properties with respect to Flax/Epoxy for tension (+137.85% in ET, and +171.22% in σUT), compression (+171.22% in Ec, and −10.6% in σUC), 3-point bending (−11.54% in EB, and +2.19 in σUB), torsion (−5.31% in G, and 395.82% in τ), and water absorption (60.04%). This novel hybrid composite may be useful for research and industry applications.  相似文献   
7.
Electrospun nonwovens of poly(L-lactide) (PLLA) modified with multiwall carbon nanotubes (MWCNT) and linear ladder-like poly(silsesquioxane) with methoxycarbonyl side groups (LPSQ-COOMe) were obtained. MWCNT and LPSQ-COOMe were added to the polymer solution before the electrospinning. In addition, nonwovens of PLLA grafted to modified MWCNT were electrospun. All modified nonwovens exhibited higher tensile strength than the neat PLA nonwoven. The addition of 10 wt.% of LPSQ-COOMe and 0.1 wt.% of MWCNT to PLLA increased the tensile strength of the nonwovens 2.4 times, improving also the elongation at the maximum stress.  相似文献   
8.
A new family of mechanochromic photonic‐crystal fibers exhibits tunable structural colors under stretching. This novel mechanochromic fiber is prepared by depositing polymer microspheres onto a continuous aligned‐carbon‐nanotube sheet that has been wound on an elastic poly(dimethylsiloxane) fiber, followed by further embedding in poly(dimethylsiloxane). The color of the fiber can be tuned by varying the size and the center‐to‐center distance of the polymer spheres. It further experiences reversible and rapid multicolor changes during the stretch and release processes, for example, between red, green, and blue. Both the high sensitivity and stability were maintained after 1000 deformation cycles. These elastic photonic‐crystal fibers were woven into patterns and smart fabrics for various display and sensing applications.  相似文献   
9.
Energy storage devices, such as lithium‐ion batteries and supercapacitors, are required for the modern electronics. However, the intrinsic characteristics of low power densities in batteries and low energy densities in supercapacitors have limited their applications. How to simultaneously realize high energy and power densities in one device remains a challenge. Herein a fiber‐shaped hybrid energy‐storage device (FESD) formed by twisting three carbon nanotube hybrid fibers demonstrates both high energy and power densities. For the FESD, the energy density (50 mWh cm?3 or 90 Wh kg?1) many times higher than for other forms of supercapacitors and approximately 3 times that of thin‐film batteries; the power density (1 W cm?3 or 5970 W kg?1) is approximately 140 times of thin‐film lithium‐ion battery. The FESD is flexible, weaveable and wearable, which offers promising advantages in the modern electronics.  相似文献   
10.
A homogeneous solution of a low‐molecular‐weight liquid crystal and a polymer spontaneously phase separates during airbrushing to form uniform fibers with a fluid liquid‐crystal core surrounded by a solid polymer sheath. This structure forms because it effectively minimizes the interfacial energy of the phase‐separated components while minimizing the elastic energy of the liquid‐crystal core. These fibers incorporate the sensitive stimuli response of liquid crystals while maintaining the structural integrity, flexibility, and large surface‐area‐to‐volume ratios inherent in fibers. We demonstrate the electro‐ and thermo‐optical response of the resulting fibers. They may find use as biological and chemical sensors. The resulting fibers have the potential to shape the future of flexible/wearable electronics and sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号